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Outline

• Objectives
• To learn statistical methods for quantitative analyses of linguistic data
• Approach empirical questions in linguistics from a model-theoretic approach
• Models, similar to theories, make predictions, but not always.
• We tweak them till we arrive at amodel whose unpredictable aspects are within acceptable bounds

What we will be following

• Quantitative methods in Linguistics (Johnson 2008)
• Code and datsets related to Johnson (2008)

– Code and data

• Statistics for Linguistics: An Introduction Using R (Winter 2020)

Topics that we will cover

• Descriptive statistics

– mean

• Distributions
• Models
• Data visualization
• Summary Stats
• Linear Models
• Correlations
• Multiple Regressions
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Working with R

• Basic R functions and packages
• Designing and building the statistical components of experiments
• Writing code and debugging

This document

• We are writing R code and associated content in Quarto
• Markdown flavor syntax
• Weaving r code and text in the same document

What statistic are and what they are not

• Statistical analyses lend validity
• We perform tests that allow us to either accept or reject the null hypothesis
• They give us a means to uncover causal relationships
• They are, however, not magic wands
• Each test and set of analyses are specific to the conditions, variables, nature and distribution of
the data; so we decide first before we conduct the experiment what tests to perform NOT after

Statistical environment

• R because it is:

1. a powerful statistics package, good at reading data, wide range of statistical tests and tech-
niques, good graphics, very flexible

2. a usable package available for many platforms (PC, Mac, Unix, Linux…. ) programmable
user community for support 3.it is noncommercial - distributed under the GNU “copyleft”,
maintained by a community of users, upgrades happen because the users need improve-
ments, not because the company needs more money.

• Where: R project page
• How:

1. Go to the R project page,
2. click the CRAN link to see the download servers on the Comprehensive RArchive Network,
3. choose a download server near your location,
4. choose your platform (Windows, Linux, Mac)
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Describing data

• Let’s say we ask 36 people to score a sentence on a grammaticality scale So that a score of 1means
that it sounds pretty ungrammatical, and 10 sounds perfectly OK. A simple way of generating
data in R

x=round(rnorm(36,4.5,2))

• rnorm needs some arguments: N, mean and the SD
• How many people gave the sentence a rating of “1”?
• Howmany rated it a “2”? When we answer these questions for all of the possible ratings we have
the values that make up the frequency distribution of our sentence grammaticality ratings

Getting the frequency distribution

data = c(2,1,6,8,12,5,1,0,1)#c function to catenate individual values together
rating = c(1,2,3,4,5,6,7,8,9)
plot(rating,data,type = "b", main="Sentence rating frequency distribution",

xlab = "Rating", ylab = "Frequency")
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• Here we defined two vectors, data and rating, data is the frequency data of ratings, and rating
refers to a vector of the rating scale

• How many people gave a particular sentence the rating of 5? Or how frequently was the rating 5
given?
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What is a vector?

• Container vector

– Ordered collection of numbers with no other structure
– The length of a vector is the number of elements in the container.

• Operations are applied componentwise.

– Given two vectors x and y of equal length, x*y would be the vector whose nth component
is the product of the nth components of x and y.

– log(x) would be the vector whose nth component is the logarithm of the nth component of
x.

How informative are frequency distributions?

plot(rating,data,type = "b", main="Sentence rating frequency distribution",
xlab = "Rating", ylab = "Frequency")
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• Plotting rating and data gives us the frequency distribution
• Majority of subjects (12) rated the sentence to be 5 on the scale
• Few people rated the sentence to be absolutely ungrammatical rating of 1 (2) and absolutely
grammatical rating of 9 (1)

• A lot many subjects rated the sentence to be 5 than 1 or 9
• This suggests that the frequency of ratings is crowded around the average rating of 4.5
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Changing the granularity of the rating scale

• The rating scale we used forces the subject to rate in integers
• Imagine a situation were subjects are given the freedom to use decimals to rate
• If so, then: no two ratings are ever going to be the same; each subject will have a rating that is
different from the other, and will have a frequency of 1

x=rnorm(36,4.5,2)
hist(x, breaks=300000,xlim=c(0,10))
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• If we quantize this difference and put individual ratings in intervals, say between 0 and 1, 1 and
2, and 2 and 3, again we will get a distribution similar to the first one

Frequency distribution in R

• How did we generate these plots and distributions
• First we defined a vector using the function, rnorm

x = rnorm(36, 4.5, 2)
#notice that this is different from round(rnorm(36,4.5,2)) where we had asked for rounded/integer values

• We defined a vector, x, with 36 values, a mean of 4.5 and standard deviation of 2.
• So decimal ratings would be ok
• Then we made two histograms

– First with:
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hist(x,breaks=30000, xlim = c(0,10))
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#here we want to plot a histogram where the width of the cells/bins is very small

• Second with:

hist(x, xlim = c(0,10))#here we want to plot a histogram where the width of the cells/bins is determined by R
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Theoretical fequency distributions

• Suppose we could draw from an infinite data set
• The larger our data set - more detailed a representation of the frequency distribution
• If we keep collecting sentence grammaticality data for the same sentence, so that instead of ratings
from 36 people we have ratings from 10,000 people

• With a histogram that has 1000 bars in it, we see that ratings near 4.5 are more common than
those at the edges of the rating scale

• Adding observations up to infinity and reducing the size of the bars in the histogram of the fre-
quency distribution

• Intervals between bars is vanishingly small - i.e. we end up with a continuous curve, almost
• Plotting the normal distribution curve on the frequency distribution

x = rnorm(10000, 4.5, 2)
hist(x,breaks=100,freq=FALSE,xlim = c(0,10))
plot(function(x)dnorm(x, mean=4.5, sd=2), 0,10, add=TRUE)
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Adding the normal curve

• Why the excellent fit between the “observed” and the theoretical distributions?
• The data is generated by random selection

– rnorm() - observations from the theoretical normal distribution dnorm()

• The “normal distribution” is an very useful theoretical function because…
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1. Let’s assume that there is an underlying property that we are trying to measure like - gram-
maticality, or
– typical duration, or
– amount of processing time

2. Assume that there is some source of random error that makes it difficult for us to get to this
underlying property

• If so, then we can think that - the “true” value of the underlying property we want to measure –

– Must be at the center of the frequency distribution that we observe in our measurements
– And, the distribution (we observe) is caused by error - with (the probability of) bigger errors
being less likely than smaller errors

The Normal Distribution

• The normal distribution is described by the normal curve, or the bell-shaped curve
• It is an exponential function of the mean value (μ “mew”) and the variance (σ “sigma”)
• The sum of the area under the curve, fx is 1
• Derived from just two numbers, the mean value and a measure of how variable the data are
• The area under the curving equalling to 1, is also useful to go from frequency distributions to
probability densities

• This is related to hypothesis testing

– 𝑓(𝑥) = 1
𝜎

√
2𝜋𝑒−(𝑥−𝜇)2/2𝜎2

• e is Euler’s constant

Type of distributions

• Uniform distribution: Every outcome is equally likely

– Six sides of a dice - equal likelihood that either side will be rolled

uni=plot(function(x)dunif(x,min=-3,max=3), -3,3, main="Uniform distribution")
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• Normal, bell-shaped distribution, measurements congregate around a typical value and values
become less and less likely as they deviate from the central value

norm=plot(function(x)dnorm(x), -3,3, main="Normal distribution")
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• Skewed right: Skewed frequency distributions

– percentage data and reaction time data
– Mean is no longer ‘central’ to the distribution, or extreme values (from one end of the scale
and less from the other) dominate the distribution
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skewed=plot(function(x)df(x, 3, 100),0,4, main="Skewed right distribution")
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• The J-shaped distribution is a special kind of skewed distribution

– Most observations come from the end of the measurement scale
– Most speech errors counts per utterance will have a speech error count of 0

j=plot(function(x)df(x, 1, 10)/3,0.2,3, main="J-shaped distribution")
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• Bimodal distribution is a frequency distribution where clearly two modalities are involved. For
instance

– f0 (or pitch) for men and women

bimodal=plot(function(x)dnorm(x, mean=3, sd=1)+dnorm(x, mean=-3, sd=1)/2,-6,6,
main="Bimodal distribution")
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• U shaped distributions result out of polarization where subjects may take drastically one view or
the other

u=plot(function(x)-dnorm(x),-3,3,
main="U-shaped distribution")
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Measures of central tendency

plot(function(x)df(x,5,100),0,4, main="Measures of central tendency")
lines(x=c(0.6,0.6),y=c(0,df(0.6,5,100)))
skew.data <- rf(10000,5,100)
lines(
x=c(mean(skew.data), mean(skew.data)),
y=c(0,df(mean(skew.data),5,100)))

lines(
x=c(median(skew.data),median(skew.data)),
y=c(0,df(median(skew.data),5,100)))

text(1,0.75,labels="mode")
text(1.3, 0.67,labels="median")
text(1.35,0.6,labels="mean")
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• Normal distribution - the central ‘values’ (from our samples) have the highest probability of being
part of the population

• What are these?
• The most frequently occurring value - mode - the tip of the frequency distribution. In the skewed
distribution, the mode is 0.6

• The central value, that is in an ordered dataset of the values, the one in the middle is the median;
aka, the center of gravity

• Arithmetic mean, or the sum of values divided by the total number of values, n
• Least squares estimate of central tendency

1. take the difference between the mean and each value in our data set
2. square these differences and
3. add them up

• We will get a value that will be smaller than what we would get if we took the median or any
other estimate of the “mid-point” of the data set

Weighted means

• Means represent the least squared estimate of the central tendency; say of ratings
• What if we also asked each subject to rate their ratings of grammaticality with a weight, wi
• This way those ratings with a higher weight will give a better estimate of the central tendency;
confidence values

• The weights represent the confidence each rater has on her particular rating
• Sample mean = ̄𝑥 = ∑𝑛

𝑖=0 𝑥𝑖
𝑛

• Weighted mean = ̄𝑥 = ∑𝑛
𝑖=0 𝑤𝑖𝑥𝑖

∑𝑛
𝑖=0 𝑤𝑖
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• Population variance = 𝜎2 = ∑ (𝑥𝑖−𝜇)2

𝑁
• Sample variance = 𝑠2 = ∑ (𝑥𝑖−�̄�)2

𝑛−1

Measures of dispersion

• The mean absolute deviation measures the absolute difference between the mean and each obser-
vation

• Absolute deviation could be one measure of difference, where absolute values of the difference
for each 𝑥𝑖 and sample mean, ̄𝑥 could be added

• We don’t because the mean is the least squares estimator of central tendency

– so a measure of deviation that uses squared deviations is more comparable to the mean
– Sum of the squared deviations, 𝑑2 = ∑𝑛

𝑖=0(𝑥𝑖 − ̄𝑥)2

• Variance

– We square the deviations before averaging them
– We have definitions for variance of a population and for a sample drawn from a larger
population

– Notice that sample variance, 𝑠2 is calculated by dividing the sum of the squared deviations
by n-1 and not n

Why n-1

• Generalize about the process but we only have access to the samples
• Relationship between scores, std. deviation and error
• Accurately talk about the population

– when we only have access to samples we divide by n-1
– Taking (n-1) as the denominator in the definition of 𝑠2, sample variance, because ̄𝑥 is not 𝜇
– Sample mean ̄𝑥 is only an estimate of 𝜇, derived from the 𝑥𝑖, so in trying to measure
variance we have to keep in mind that our estimate of the central tendency ̄𝑥 is probably
wrong to a certain extent

• The mean of the underlying process (population) we don’t know
• The mean of the n points we do, this however contains an error due to statistical noise
• Effect of the error is reduction in the calculated value of 𝑠2

• To make up for this, n is replaced by n-1
• If n is large, the difference doesn’t matter
• If n is small, this replacement provides a more accurate estimate of the standard deviation of the
underlying process
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Standard deviation

• Variance is the average squared deviation - the differences are squared
• To get to the original unit of deviation we take the square root of the variance; sample and popu-
lation

• Aka, the RMS (root mean square) sample standard deviation

1. first square the difference
2. then take the mean and then
3. square root of that

• Sample standard deviation

– 𝑠 = √∑ (𝑥𝑖−�̄�)2

𝑛−1

• Area under the normal distribution is equal to 1
• Measures of the central tendency in terms of ̄𝑥 (sample mean) and also the sample standard
deviation, s

• Normal distribution can be defined for any mean value 𝜇, and any standard deviation 𝜎
• This distribution is also used to calculate probabilities, where the total area under the curve is
equal to 1

• That means that the area under any portion of the curve is equal to some proportion of 1
• This happens, when the mean of the bell-shaped distribution is 0 and the standard deviation is 1

– 𝑓𝑥 = 1√
2𝜋𝑒− 𝑥2

2

Distributions

• Throwing a six sided dice 20 times
• Let’s note down all the 20 outcomes
• Drawing from a uniform distribution
• Sample distribution
• For every outcome count the number of times it appears

Z-score and normalization

• Two things to remember:

1. Since the area under the normal distribution curve is 1, we can state the probability (area
under the curve) of finding a value larger than any value of x, smaller than any value of x,
or between any two values of x; relating individual scores to the normal distribution
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2. Since, we can approximate our data with a normal distribution - we can state these proba-
bilities for our data given the mean and standard deviation; under the assumption that our
data are normally distributed

• Relate the frequency distribution of our data to the normal distribution because we know the
mean and standard deviation of both

• Key is to be able to express any value in a data set in terms of its distance in standard deviations
from the mean

• z-score normalization, 𝑧𝑖 = 𝑥𝑖−�̄�
𝑠

#------- shade.tails -------------------
# draw probability density functions of t with critical regions shaded.
# by default the function draws the 95% confidence interval on the normal
# distribution.
#
# Input parameters
# crit - the critical value of t (always a positive number)
# df - degrees of freedom of the t distribution
# tail - "upper", "lower" or "both"
# xlim - the x axis range is -xlim to +xlim

shade.tails <- function(crit=1.96, df = 10000, tail = "both",xlim=3.5)
{

curve(dt(x,df),-xlim,xlim,ylab="Density",xlab="t")

ylow = dt(xlim,df)
pcrit = pt(crit,df)
caption = paste(signif(1-pcrit,3))

if (tail == "both" | tail == "lower") {
xx <- seq(-xlim,-crit,0.05)
yy <- dt(xx,df)
polygon(c(xx,-crit,-xlim),c(yy,ylow,ylow),density=20,angle = -45)
text(-crit-0.7,dt(crit,df)+0.02,caption)

}
if (tail =="both" | tail == "upper") {

xx2 <- seq(crit,xlim,0.05)
yy2 <- dt(xx2,df)
polygon(c(xx2,xlim,crit),c(yy2,ylow,ylow),density=20,angle = 45)
text(crit+0.7,dt(crit,df)+0.02,caption)

}
}
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Sampling from a uniform distribution

• Storing outputs of functions in vectors
• Here, x, is a vector that stores the outout of the function sample
•

x <- sample(1:6,50,TRUE)
hist(x)
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[1] 5 2 3 4 6 2 4 4 1 6 5 6 5 6 4 2 1 1 6 1 6 1 6 2 5 2 3 2 1 3 1 5 4 4 6 3 5 1
[39] 5 4 6 5 1 1 2 4 6 4 3 1

• Every time we run this code chunk the out of the sampling will change

x <- runif(10000, min = 1, max = 6)
hist(x)
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Histogram of x
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hist(x, col = 'steelblue')
abline(v = mean(x), lty = 1, lwd = 2)
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Uniform Distribution

x_new <- rnorm(100)
hist(x_new, breaks=100000,col = 'steelblue')
abline(v = mean(x_new), lty = 2, lwd = 2)
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Still Uniform Distribution

x_new <- rnorm(1000)
hist(x_new, breaks=100000,col = 'steelblue')
abline(v = mean(x_new), lty = 2, lwd = 2)
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Histogram of x_new
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Normal or Gaussian Distribution

x_new <- rnorm(10000)
hist(x_new, breaks=100000,col = 'steelblue')
abline(v = mean(x_new), lty = 2, lwd = 2)
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Increasing sampling in a normal or Gaussian Distribution

x_new <- rnorm(100000)
hist(x_new, breaks=100000,col = 'steelblue')
abline(v = mean(x_new), lty = 2, lwd = 2)
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Further increasing sampling in a normal or Gaussian Distribution

x_new <- rnorm(1000000)
hist(x_new, breaks=100000,col = 'steelblue')
abline(v = mean(x_new), lty = 2, lwd = 2)
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Histogram of x_new
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Increasing breaks now in a normal or Gaussian Distribution

x_new <- rnorm(1000000)
hist(x_new, breaks=1000000,col = 'steelblue')
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Getting some invariant parts of the sample: mean and standard deviation

• Sum of x ∑ 𝑥𝑖

– ∑ 𝑥2
𝑖

– ∑ 𝑥𝑖𝑦𝑖

• Mean of x 1
𝑛 ∑𝑛

𝑖=𝑖 𝑥𝑖

• 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
𝑠 = √ 1

𝑛−1 ∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2

𝜎 is the population parameter
• Variance = 𝜎2

VOTk <- function(x) dnorm(x, mean = 100, sd = 10)
VOTp <- function(x) dnorm(x, mean = 120, sd = 25)
myYLim <- c(0, 0.04)
myXlim <- c(0,140)
plot(VOTk, from = 35, to = 160, ylim = myYLim, col="red",

xlab="Voice Onset Time", myXlim)
plot(VOTp, from = 35, to = 200, add = TRUE, col="blue", ylim = myYLim, xlim=myXlim)
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Plotting Vowels using PhonR

library(phonR)
#(indo)
#head(indo)
summary(indo)

subj gender vowel f1 f2
Length:1725 f:867 a:349 Min. : 248.0 Min. : 489
Class :character m:858 e:335 1st Qu.: 402.0 1st Qu.:1055
Mode :character i:348 Median : 493.0 Median :1509

o:346 Mean : 531.1 Mean :1594
u:347 3rd Qu.: 632.0 3rd Qu.:2097

Max. :1129.0 Max. :3163

Plotting Vowels using PhonR

with(indo, plotVowels(f1, f2))
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Plotting Vowels using PhonR
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with(indo, plotVowels(f1, f2, var.sty.by = vowel, var.col.by = vowel))
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Plotting Vowels using PhonR

with(indo, plotVowels(f1, f2, var.sty.by = vowel, var.col.by = gender))

3000 2500 2000 1500 1000 500

10
00

60
0

F2

F
1

25



Plotting Vowels using PhonR

par(mfrow = c(1, 2))
rounded <- ifelse(indo$vowel %in% c("o", "u"), "round", "unround")
with(indo, plotVowels(f1, f2, var.sty.by = gender, var.col.by = subj))
with(indo, plotVowels(f1, f2, var.sty.by = subj, var.col.by = rounded))
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Calculating vowel space areas

poly.area <- with(indo, vowelMeansPolygonArea(f1, f2, vowel, poly.order = c("i",
"e", "a", "o", "u"), group = subj))

hull.area <- with(indo, convexHullArea(f1, f2, group = subj))
rbind(poly.area, hull.area)

F02 F04 F08 F09 M01 M02 M03
poly.area 485051.4 337364.0 434816 302064.9 197746.1 229501.7 215713.3
hull.area 1254575.0 866109.5 1020835 751327.0 517212.5 666246.0 477518.5

M04
poly.area 177131.1
hull.area 568364.0
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Ellipses, polygons, and hulls

#par(mfrow = c(2, 2))
with(indo, plotVowels(f1, f2, vowel, plot.tokens = TRUE, pch.tokens = vowel, cex.tokens = 1.2,

alpha.tokens = 0.2, plot.means = TRUE, pch.means = vowel, cex.means = 2, var.col.by = vowel,
ellipse.line = TRUE, pretty = TRUE))
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Normalizing data

• Speaker vocal tracts are variable - different lengths and cross-sections
• Implies variable resonances
• 𝐹𝑛=

(2𝑛−1)𝑐
4𝐿 , for a tube that is open at one end and closed in the other

Minimizing variation

• In order to minimize the variation brought about by the variable vocal tract parameters, often we
do a type of normalization that we call z-score normalization
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Z-Score Normalization

• This serves two purposes

1. Allows us to reduce individual differences (between subjects)
2. Makes data comparable

• Z-Score normalization
• 𝑧 = 𝑥𝑖−𝑥

𝜎
• Where 𝜎 = √ 1

𝑛−1 ∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2

Error in estimating population parameters

• Two major sources of errors

1. The underlying distribution
2. The number of samples

• 𝑆𝐸 = 𝜎√𝑛

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

density(x = baseline_bengali$F1_V1_T55)
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Normal distribution and standardization

• With standardized values we can make probability statements
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• In this figure, the area under the normal curve between -1.96 and 1.96 is 0.95.
• 95% of the values we draw from a normal distribution will be between 1.96 standard deviations
below the mean and 1.96 standard deviations above the mean

Figure 1: Z-score

How normal

• The normal distribution is a helpful way to describe data; Why? Because from this distribution,
given a value, we can state the probability of its occurrence

• The normal distribution also provides a basis for making inferences about the accuracy of our
statistical estimates.

• In data reduction, we use just the mean and standard deviation to describe the whole frequency
distribution.

• It is important to find out whether or not the frequency distribution of our data is shaped like the
normal distribution.

• First we will find out if our data are normally distributed, and then we’ll look at a couple of
transformations that we can use to MAKE data more normal
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Cherokee dataset

What is VOT

• Voice Onset Time
• Duration of time it takes for regular voicing to get initiated following a stop into the vowel

Cheroke VOT

• VOT data Longitudinal data collected first in 1971 and then again 2001 Let’s define two vectors
that represent the two sets of data

vot01 = c(84, 82, 72,193, 129, 77, 72, 81, 45, 74, 102,
77, 187, 79, 86, 59, 74, 63, 75, 70, 106, 54, 49, 56, 58, 97)

# And then
vot71 =c(67, 127, 79, 150, 53, 65, 75, 109, 109,

126, 129, 119, 104, 153, 124, 107, 181, 166)

#The simplest way to means and standard deviations in R are to simply ask for them
mean(vot01)#mean of the data set vot01, 84.65385

[1] 84.65385

mean(vot71)#mean of the data set vot71, 113.5

[1] 113.5

sd(vot01)

[1] 36.08761

sd(vot71)# We will get 36.08761 and 35.92844, respectively

[1] 35.92844
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hist(vot01,freq=FALSE)#make a histogram by using probability densities and not the actual counts; this way the total area of the histogram is equal to 1
#Getting help from R: type
?hist
plot(function(x)dnorm(x, mean=84.654, sd=36.088), 40, 200, add=TRUE)#For 2001

Histogram of vot01

vot01
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hist(vot71,freq=FALSE)
plot(function(x)dnorm(x, mean=113.5, sd=36.087), 40, 200, add=TRUE)#For 1971
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• We have two distributions; plot the frequency distribution as a histogram and then compare the
observed distribution with the best-fitting normal curve

• Both the 2001 and the 1971 data sets are fairly similar to the normal curve
• The 2001 set has a pretty normal looking shape, but there are a couple of measurements at nearly
200 ms. that don’t ‘fit’.

• The 1971 set also looks like a normally distributed data set, though there are no observations
between 80 and 100 ms in this data set. If these data came from a normal curve we would expect
several observations in this range.

• Making things normal
• Let’s see what happens if we remove the outliers from the 2001 dataset; does the fit get better?
Let’s assume that these outliers are caused due to speech errors for the moment

• Let’s assume that the two VOT measurements in vot01 that are greater than 180 ms are outliers
• Calculate the mean and standard deviation for only those numbers in the vector that are less than
180

mean(vot01[vot01<180])

[1] 75.875

sd(vot01[vot01<180])

[1] 19.218

• You must have good reasons for trimming data

q-q plots

• Frequency distribution graphs give an indication of whether our data is distributed on a normal
curve

• It would be nice to be able to measure just how “normally distributed” these data are
• Quantile means the fraction (or percent) of points/scores below the given value
• So the 0.3 (or 30%) quantile is the point at which - 30% percent of the data fall below - and 70%
fall above that value.

• Quantiles are values that divide the distribution so that a given proportion of observations falls
below the quantile. The median is a good example of a quantile.

• q-q plots: Measure the degree of fit between the data and the normal curve
• quantile/quantile plot are a correlation between

1. the actual quantile scores and
2. the quantile scores that are predicted by the normal curve
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• The quantile-quantile (q-q) plot is a graphical technique for determining if two data sets come
from populations with a shared distribution.

• Plot of the quantiles of the first data set against the quantiles of the second data set.
• The median is the central value of the distribution, such that half the points are less than or equal
to it and half are greater than or equal to it.

• Quantiles are easily understood if you think about quartiles (3+ 1 Median);
• We use two tertiles to split data into three groups, four quintiles to split them into five groups,
and so on.

• A 45-degree reference line is also plotted.
• If the two sets come from a population with the same distribution, the points should fall approxi-
mately along this reference line.

• Greater the departure from this reference line, the greater the evidence for the conclusion that the
two data sets have come from populations with different distributions.

• Advantages of the q-q plot are:

1. The sample sizes do not need to be equal.
2. Many distributional aspects can be simultaneously tested

• Shifts in location, shifts in scale, changes in symmetry, and the presence of outliers can all be
detected from this plot.

• If the two data sets come from populations whose distributions differ only by a shift in location,
the points should lie along a straight line that is displaced either up or down from the 45-degree
reference line.

• We expect our 71 data to be fairly normally distributed

vot71.qq = qqnorm(vot71)$x # make the quantile/quantile plot
qqline(vot71) # put the line on the plot
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cor(vot71,vot71.qq) # compute the correlation

[1] 0.9868212

vot01.qq = qqnorm(vot01)$x # make the quantile/quantile plot
qqline(vot01) # put the line on the plot
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cor(vot01,vot01.qq) # compute the correlation

[1] 0.8700187

• Departures from the straight line indicate departures from the specified distribution
• The 1971 data shows that there is a good fit between expected and actual quantiles; reflected in
a correlation coefficient of 0.987 - almost a perfect 1

• Contrast this with the 2001 data
• Most of the data points in the 2001 data set are just where we would expect them to be in a normal
distribution

• However, there are two or three large VOT values that are much larger than expected.
• Because of this the correlation between expected and observed quantiles for this data set (r =
0.87) is lower than what we found for the 1971 data.
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Summary so far

• We took two data sets and calculated their means and standard deviations
• We also learned how to manipulate data to see how we can remove outliers
• We compared the sample distributions to a theoretical distribution to see how well our data are
correlated with the theoretical distribution

• We answered the question, “How normal are our data?”

Hypothesis testing

• How to test hypotheses regarding means …

1. We can make probability statements about variables in normal distributions
2. We can estimate the parameters of empirical distributions as the least squares estimates of

̄𝑥 and s
3. Means of samples drawn from a population, fall in a normal distribution
4. We can estimate the standard error (SE) of the normal distribution of x̄ values from a single

sample.

• What this means is that we can make probability statements about means, and hence relate them
to our hypotheses…let’s start with Hypothesis 0, or the null hypothesis

H0: 𝜇 = 100

• We want to make probability statements about observations using the normal distribution
• Remember, we converted our observation scores into z scores (the number of standard deviations
different from the mean) using the z score formula.

• To test a hypothesis about the population mean (μ) on the basis of our sample mean and the
standard error of the mean we use a similar approach

• Big problem is !!! We don’t know the population standard deviation.
• Instead, we estimate it with the sample standard deviation, and the uncertainty introduced by
using s instead of σ means that we are off a bit and can’t use the normal distribution to compare
x̄ to μ.

• To be a little more conservative, we use a distribution (or family of distributions), called the
t-distribution

• Taking into account how certain we can be about our estimate of σ.
• Since, a larger sample size gives us a more stable estimate of the population mean, similarly we
get a better estimate of the population standard deviation with larger sample sizes. So the larger
the sample size, the closer the t distribution is to normal
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One-sample t-test

• We use a slightly different distribution to talk about mean values, but the procedure is similar to
using the normal distribution

• To make a probability statement about a z-score we refer to the normal distribution, and to make
a probability statement about a t value we refer to the t distribution.

• It may seem odd to talk about comparing the sample mean to the population mean because we
can easily calculate the sample mean but the population mean is not a value that we can know

• But, if we think of this as a way to test a hypothesis, then we have something.
• For example, with the Cherokee VOT data, we observed that x̄ = 84.7 and s = 36.1 for the stops
produced in 2001

– We can now ask whether the population mean μ is different from 100. Plug the numbers
into the formula.

• Here, 𝑠 ̄𝑥 is the standard error

– 𝑆𝐸 = 𝑠 ̄𝑥 = 𝜎√
𝑁 ; population

– 𝑆𝐸 = 𝑠 ̄𝑥 = 𝑠𝑥√𝑛
– 𝑡 = �̄�−𝜇

𝑠�̄� = 84.7−100
36.1/

√
26 = −15.3

7.08 = −2.168

Interpreting t values

• t value in this test is -2.168.
• But what does that mean?
• We were testing the hypothesis that the average VOT value of 84.7 ms is not different from 100
ms.

• This can be written as H0: μ = 100.
• Meaning that the null hypothesis (the “no difference” hypothesis H0) is that the population mean
is 100.

• Nowwe know that, observations that are more than 1.96 standard deviations away from the mean
in a normal distribution are pretty unlikely - only 5% of the area under the normal curve.

• So this t value of -2.168 (-15.3 is a little more than 2 standard errors than the hypothesized mean)
will be a pretty unlikely one to find if the population mean is actually 100 ms.

• The more likely conclusion that we could draw is that the population mean is less than 100.

Type of errors

• We want to test the hypothesis (null) that the true Cherokee VOT in 2001 (μ ) is 100ms by taking
a sample from a larger population of possible measurements.

• If the sample mean x̄ is different enough from 100ms then we reject this hypothesis otherwise
we accept it.
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• How different is different enough?
• We can quantify the difference between the sample mean and the hypothesized population mean
in terms of a probability.

• If the population mean is 100 ms, then only 2 times in 100 could we get a sample mean of 84.7
or less.

• Suppose we decide then that this is a big enough difference
• The probability of a sample of 84.7 mean coming from a population that has a mean of 100 ms
is preeeeeetty low - so we reject the hypothesis that μ = 100 (let’s call it H0)

• Instead, we accept the alternative hypothesis that μ < 100 (call this H1; this is only one of several
possible alternatives)

• H0: μ = 100 (Reject); H1: μ < 100 (Accept)

Type of errors - Type I

• But wait… 2 times out of 100 we will be wrong to reject the null hypothesis
• This error probability (0.02) is called the probability of making a type I error.
• A type I error is that we incorrectly reject the null hypothesis
• We claim that the population mean is less than 100, when actually we just got unlucky and hap-
pened to draw one of the 2 out of 100 samples for which the sample mean was equal to or less
than 84.7.

• No matter what the sample mean is, we can’t reject the null hypothesis with certainty because
the normal distribution extends from negative infinity to positive infinity

• In practice, going with our best guess means choosing a type I error probability that we are willing
to tolerate.

• Most often we are willing to accept a 1 in 20 chance (5 in 100, if you will) that we just got an
unlucky sample that led us to make a type I error.

• This means that if the probability of the t value that we calculate to test the hypothesis is less than
0.05, we are willing to reject H0 (μ = 100)

• And conclude that the sample mean comes from a population that has a mean that is less than
100 (μ < 100).

• This criterion probability value (p<0.05) is called the “alpha” α level of the test.
• The α level is the acceptable type I error rate for our hypothesis test

Type of errors - Type II

• Where there is a type I error, there is a type II error as well
• A type II error occurs when we incorrectly accept the null hypothesis.
• Suppose we test the hypothesis that the average VOT for Cherokee (or at least this speaker) is
100 ms, but the actual true mean VOT is 95 ms.

• If our sample mean is 95 ms and the standard deviation is again about 35 ms we are surely going
to conclude that the null hypothesis (H0: μ = 100) is probably true.
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• At least our data is not inconsistent with the hypothesis because 24% of the time (p=0.24) we can
get a t value that is equal to or less than -0.706.

• By accepting the null hypothesis we made a type II error. Just as we can choose a criterion α level
for the acceptable type I error rate, we can also require that our statistics avoid type II errors.

• The probability of making a type II error is called β, and the value we are usually interested in is
1-β, called the power of our statistical test

– 𝑡 = �̄�−𝜇
𝑠�̄� = 95−100

36.1/
√

26 = −5
7.08 = −0.706

• Preregistration of studies in linguistics and setting the power

t-tests in R

t.test(vot01,mu=100, alternative="less")

One Sample t-test

data: vot01
t = -2.1683, df = 25, p-value = 0.01993
alternative hypothesis: true mean is less than 100
95 percent confidence interval:

-Inf 96.74298
sample estimates:
mean of x
84.65385

• In this t.test(), we entered the name of the vector that contains our data, the hypothesized popu-
lation mean for these data, and that we want to know how likely it is to have a lower t value

Correlations

• So far we have been looking at the statistical background assumptions that make it possible to
test hypotheses about the population mean.

• The aim is to explain some of the key concepts that underlie studies of relationships among
variables.

• Oneway to explore the relationship between two variables is by looking at counts in a contingency
table.

• We have a data set of two measurements of the first formant (F1).
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• We have F1 values for men and women for the vowels /i/, /e/, /a/, /o/, and /u/ in four different
languages

• Women tend to have shorter vocal tracts than men and thus have higher resonance frequencies. -
The average F1 of the women is 534.6 Hz and the average F1 for men is 440.9.

• We can construct a contingency table by counting how many of the observations in this data set
fall above or below the mean on each of the two variables being compared.

• For example, we have the five vowels in Sele measured on two variables - male F1and female
F1 - and we are interested in studying the relationship or correlation between male and female
F1 frequency.

F1_data <- read.csv("F1_data.csv", header = TRUE, sep=",")
attach(F1_data)
plot(female,male)
lines(x=c(mean(female),mean(female)),y=c(200,900),lty=2)
lines(x=c(200,1100),y=c(mean(male),mean(male)),lty=2)
abline(lm(male~female))

400 500 600 700 800 900 1000
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50
0

70
0
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e

• The grid lines mark the average female (vertical line) and male (horizontal line) F1 values. The
diagonal line is the best fitting straight line (the linear regression) that relates female F1 to male
F1

• If the male F1 falls below the average male F1, then the female F1 for that vowel will probably
also fall below the average F1 for female speakers. In only one case does this relationship not
hold.

• Contingency tables are a useful way to see the relationship, or lack of one, between two variables
• From this plot/table all we know is that if the male F1 is above average so is the female F1
• But we don’t know whether they tend to be the same amount above average or if sometimes
the amount above average for males is much more than it is for females. It would be much better
to explore the relationship of these two variables without throwing out this information
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Figure 2: Contingency table

• Here, we can see the four cells of the contingency table
• There are 6 data points in the upper right quadrant of the graph
• 12 data points in the lower left
• And 1 that just barely ended up in the lower right quadrant.
• These quadrants were marked in the graph by drawing a dashed line at the mean values for the
male (441 Hz) and female (535 Hz) talkers.

• We can see, that the relationship between male and female F1 values goes beyond simply being
in one quadrant of the graph or not.

• In fact, if we can divide the lower left and the upper right quadrants into quadrants again
• We would still have the relationship, higher male F1 is associated with higher female F1.
• We need a measure of association that will give us a consistent indication of how closely
related two variables are

• Developing a measure of association between two variables is to measure deviation from the
mean (𝑥𝑖 − ̄𝑥)

• The association of male F1 and female F1 can be captured by seeing that when female F1 (let’s
call this variable x) was higher than the female mean, male F1 (y) was also higher than the male
mean.

• That means that if (𝑥𝑖 − ̄𝑥)̄ is positive

– then (𝑦𝑖 − ̄𝑦) is also positive

• The association is strongest when the magnitudes of these deviations are matched
• when 𝑥𝑖 is quite a bit larger than the ̄𝑥 and 𝑦𝑖 is also quite a bit larger than the ̄𝑦
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Correlations and covariance

• The strength of the association can be gauged by multiplying the deviations
• If indeed is 𝑥𝑖 quite a bit larger than ̄𝑥 and 𝑦𝑖 is also much larger than ̄𝑦

– then the product will be greater than if 𝑦𝑖 is only a little larger than the ̄𝑦

• Also if 𝑥𝑖 is quite a bit less than ̄𝑥 and 𝑦𝑖 is also quite a bit less than ̄𝑦 the product will again be
a large positive value

• Product of the deviations will be larger as we have a larger and larger data set,
• So we normalize this value to the size of the data set by taking the average of the paired deviations.
• This average product of the deviations is called the covariance of X and Y
• Sum of the product of the deviations, ∑𝑛

𝑖=0(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

• Covariance of x and y, ∑𝑛
𝑖=0(𝑥𝑖−�̄�)(𝑦𝑖− ̄𝑦)

𝑛

• The size of a deviation from the mean can be standardized so that we can compare deviations
from different data sets on the same measurement scale.

• Deviation can be expressed in units of standard deviation with the z-score normalization.
• This is also done when we measure association as well.
• The correlation coefficient rxy is simply a scaled version of the sum of the product of the devi-
ations using the idea that this value will be highest when x and y deviate from their means in
comparable magnitude.

• Correlation is identical to covariance, except that correlation is scaled by the standard de-
viations

• While covariance can have any value, correlation ranges from 1 to -1 (perfect positive correlation
is 1 and perfect negative correlation is -1)

• Correlation of x and y,
∑𝑛

𝑖=0
(𝑥𝑖−�̄�)

𝑠𝑥
(𝑦𝑖−�̄�)

𝑠𝑦
𝑛 = ∑𝑛

𝑖=0(𝑧𝑥)(𝑧𝑦)
𝑛 = 𝑟𝑥𝑦
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Day 3

The LM function

summary(lm(male~female))

Call:
lm(formula = male ~ female)

Residuals:
Min 1Q Median 3Q Max

-70.619 -18.170 3.767 26.053 51.707

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 47.59615 23.85501 1.995 0.0623 .
female 0.73564 0.04162 17.676 2.23e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 37.49 on 17 degrees of freedom
Multiple R-squared: 0.9484, Adjusted R-squared: 0.9454
F-statistic: 312.4 on 1 and 17 DF, p-value: 2.23e-12

cor(male,female)

[1] 0.9738566

Finding the best fitting line

• Assuming we have a perfect correlation between x and y we can say that:
• 𝑦𝑖− ̄𝑦

𝑠𝑦
= 𝑥𝑖−�̄�

𝑠𝑥
Assuming deviations are equivalent, i.e., 𝑟𝑥𝑦 = 1

• Now we can predict the ̂𝑦𝑖, estimating 𝑦𝑖 from 𝑥𝑖 when 𝑟𝑥𝑦 = 1
• ̂𝑦𝑖 = 𝑠𝑦

𝑠𝑥
(𝑥𝑖 − ̄𝑥) + ̄𝑦

• Even if the correlation is not perfect (not equal to 1) we would like to get the predicted ̂𝑦𝑖
• The best prediction of 𝑧𝑥 is 𝑟𝑥𝑦 times 𝑧𝑥, making our prediction of ̂𝑦𝑖
• ̂𝑦𝑖 = 𝑟𝑥𝑦

𝑠𝑦
𝑠𝑥

(𝑥𝑖 − ̄𝑥) + ̄𝑦
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• Now we can fit this into a line equation of the form:

– “slope-intercept”, y = Bx +A
– Here, “B” is the slope and “A” gives the y-intercept
– Or where the line crosses the y-axis

T-test for two-samples

Comparing Cherokee VOTs from 1971 and 2001

• Previously, we saw that we can test the hypothesis that a sample mean value x is the same as or
different from a particular hypothesized population mean μ

• The key question of interest could be about comparison of two sample means; such as in the
Cherokee 1971/2001 data

• Is the mean VOT in 1971 different from the mean VOT in 2001, as the boxplot suggests
• We want to test whether the average VOT in 1971 was equal to the average VOT in 2001
• We think that for this speaker there may have been a slow drift in the aspiration of voiceless stops
as a result of language contact

• This question provides us with the null hypothesis that there was no reliable difference in the true,
population, means for these two years - that is: H0: μ1971 = μ2001

vot <- read.delim("cherokeeVOT.txt")
vot

VOT year Consonant
1 67 1971 k
2 127 1971 k
3 79 1971 k
4 150 1971 k
5 53 1971 k
6 65 1971 k
7 75 1971 k
8 109 1971 k
9 109 1971 t
10 126 1971 t
11 129 1971 t
12 119 1971 t
13 104 1971 t
14 153 1971 t
15 124 1971 t
16 107 1971 t

43



17 181 1971 t
18 166 1971 t
19 84 2001 k
20 82 2001 k
21 72 2001 k
22 193 2001 k
23 129 2001 k
24 77 2001 k
25 72 2001 k
26 81 2001 k
27 45 2001 k
28 74 2001 k
29 102 2001 k
30 77 2001 k
31 187 2001 k
32 79 2001 t
33 86 2001 t
34 59 2001 t
35 74 2001 t
36 63 2001 t
37 75 2001 t
38 70 2001 t
39 106 2001 t
40 54 2001 t
41 49 2001 t
42 56 2001 t
43 58 2001 t
44 97 2001 t

attach(vot)
summary(vot)

VOT year Consonant
Min. : 45.00 Min. :1971 Length:44
1st Qu.: 71.50 1st Qu.:1971 Class :character
Median : 81.50 Median :2001 Mode :character
Mean : 96.45 Mean :1989
3rd Qu.:120.25 3rd Qu.:2001
Max. :193.00 Max. :2001
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# We need to treat year as a nominal variable and not a continuous variable
vot$year <- factor(vot$year)
summary(vot)

VOT year Consonant
Min. : 45.00 1971:18 Length:44
1st Qu.: 71.50 2001:26 Class :character
Median : 81.50 Mode :character
Mean : 96.45
3rd Qu.:120.25
Max. :193.00

boxplot(VOT~year, data = vot, col="lightgrey", ylab = "Voice Onset Time (ms)")

1971 2001
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library(ggplot2)
vot_bp<-ggplot(vot, aes(x=year, y=VOT)) + geom_boxplot(aes(fill = factor(year))) +
ylab("VOTs from Cherokee") +
theme(axis.text.x = element_text(size=20, face="bold"),axis.text.y = element_text(face="bold", size=20),

axis.title.x=element_blank(), axis.title.y = element_text(size=16, face="bold"))
vot_bp= vot_bp + theme(panel.background = element_rect(fill = "gray",colour = NA), legend.position="right")
vot_bp
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Testing our two-samples

• We can test this hypothesis with a t- test similar to the “one sample” t-test that we discussed
earlier

• There, we tested the null hypothesis: H0: μ1971 = μhyp
• We supplied the hypothesized population mean.
• The idea with the t-test is that we expect the difference between means to be zero
• The null hypothesis is that there is no difference

– and we measure the magnitude of the observed difference relative to the magnitude of ran-
dom or chance variation we expect in mean values (the standard error of the mean)

• If the difference between means is large, more than about 2 standard errors (a t value of 2 or -2)
• We are likely to conclude that the sample mean comes from a population that has a different mean
than the hypothesized population mean

• In testing whether the mean VOT in 1971 is different from the mean VOT in 2001 for this talker
we are combining two null hypotheses:

– H0: μ1971 = μ
– H0: μ2001 = μ
– H0: μ1971 = μ2001

• In other words, the expected mean value of the 1971 sample is the same as the expected value of
the 2001 sample

• Same as with a one-sample t-test the expected value of the difference is 0.
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• Therefore we can compute a t statistic from the difference between the means of our two samples.
• But, when we compare the two means in this computation of t. We have two samples of
data; one from 1971 and one from 2001

• We have two estimates of the standard error of the mean (SE). In calculating the t statistic we
need to take information from both the 1971 data set and the 2001 data set when we compute the
SE for this test.

• 𝑡 = �̄�1971−�̄�2001
𝑆𝐸 ; the two-sample t value

• We need to compute the SE for this test, and we have two SEs, one for 1971 and one for 2001
• What is our estimate of the standard error of the mean?
• With only one sample we used the standard deviation or the variance of the sample to estimate
the standard error

• With two samples, there are two estimates of variance, 𝑠2
1971 and 𝑠2

2001

• If we can assume that these two represent essentially the same value then we can pool them by
taking the weighted average as our best estimate of SE

• Before pooling the variances from our 1971 and 2001 samples we need to test the hypothesis that
they do not differ

• This hypothesis can be tested using the F distribution

– a theoretical probability distribution that gives probabilities for ratios of variances

• If we want to know whether the two estimates of variance are equal to each other
• We can simply take their ratio and test the probability of this ratio, given the degrees of freedom
that went into each variance estimate

• We are testing the hypothesis that H0=𝑠2
1971 = 𝑠2

201
• 𝑆𝐸 = 𝑠√𝑛 = √𝑠2

𝑛

Establishing equal variance(s)

• We do this with the F distribution because this distribution lets us specify degrees of freedom for
the numerator and the denominator of the ratio

• The variances are not very different from each other (36.1 ms versus 35.9 ms)
• Also, the variances are very similar in magnitude
• Thus the F ratio is close to one
• 𝐹 = 𝑠2

2001
𝑠2

1971
= 36.08762

35.92842 = 1302.32
1290.85 = 1.0089, F-test of equality of variance

• We look up the probability of getting an F of 1.0089 or higher using the R pf() function
• In this function, we specify the F value, the degrees of freedom the numerator (n2001 - 1 = 25)
and of the denominator (n1971 - 1 = 17)

• We also specify that we are looking at the upper tail of the F distribution because, we put the
larger of the two variances as the numerator.

• The probability of getting an F value of 1.0089 or higher when the variances are in fact equal is
quite high p=0.5 so we have no reason to believe that the variance of the 1971 data is any different
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from the variance of the 2001 data

pf(1.0089,25,17,lower.tail=F)

[1] 0.5034847

Pooling variance

• We can estimate SE for our test of whether VOT was different in 2001 than it was in 1971 by
pooling the two sample variances

• This is done using the weighted average of the variances where each variance is weighted by its
degrees of freedom.

• Let’s calculate the weighted average of the pooled variances?

attach(vot)

The following objects are masked from vot (pos = 4):

Consonant, VOT, year

pooled_variance=(var(VOT[year=="1971"])*17 + var(VOT[year=="2001"])*25) / (17+25)
pooled_variance

[1] 1297.676

• The pooled variance for our Cherokee VOT data is 1297.7 and hence the pooled standard devia-
tion is s = 36.02

• The t statistic that we use to compare two means uses the pooled variance from the two samples
to estimate SE - the standard error of the mean(s), and t is a ratio of

1. The difference between the two means ̄𝑥𝑎 − ̄𝑥𝑏
2. SE calculated from the pooled variance

• 𝑡 = �̄�𝑎−�̄�𝑏

√ 𝑠2𝑝
(𝑛𝑎+𝑛𝑏)

t.test(VOT[year=="1971"],VOT[year=="2001"], var.equal=TRUE, alternative="greater")
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Two Sample t-test

data: VOT[year == "1971"] and VOT[year == "2001"]
t = 2.6116, df = 42, p-value = 0.006223
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
10.2681 Inf
sample estimates:
mean of x mean of y
113.50000 84.65385

Paired t-test

• Naturally occurring pairs of observations
• F1 data for men and women for each language and vowel in the data set
• The male F1 of /a/ in Sele ~ the female F1 of /a/ in Sele
• The male F1 of /i/ in Sele ~ the female F1 of /i/ in Sele
• Men and women tend to have different vowel F1 frequency
• However, the difference between vowels can be bigger than the overall male/female difference
• To test the male/female difference we have to have a control for the vowel differences
• Pairing the male/female differences by vowel gives us this control
• Define a derived variable
• The difference between the paired observations, 𝑑𝑖 = 𝑥𝑎𝑖 − 𝑥𝑏𝑖
• Calculate the mean and variance of this difference such as for any other variable
• Test the null hypothesis - there is no difference between the paired observations, 𝐻0 ∶ 𝑑 = 0

attach(F1_data)

The following objects are masked from F1_data (pos = 6):

female, language, male, vowel

t.test(female, male, alternative="greater", var.equal = TRUE) # Two Sample t-test

Two Sample t-test

data: female and male
t = 1.5356, df = 36, p-value = 0.06669
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alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
-9.323753 Inf
sample estimates:
mean of x mean of y
534.6316 440.8947

t.test(female, male, paired="TRUE", alternative="greater") # Paired t-test

Paired t-test

data: female and male
t = 6.1061, df = 18, p-value = 4.538e-06
alternative hypothesis: true mean difference is greater than 0
95 percent confidence interval:
67.11652 Inf
sample estimates:
mean difference

93.73684

Paired test in comparison to two-samples

• Paired t-tests help us remove systematic differences due to vowel or language influence
• This is because the F1 difference is immune to any vowel or language influences
• F1 variation due to language or vowel category is automatically controlled by taking paired F1
measurements from the same vowels spoken by speakers of the same language

• The paired t-test, due to the underlying controls, tends to be more sensitive compared to the two
sample t test

• Comparing between the independent samples t-test and the paired t-test, the paired t-test gives
us more reliable results

• True difference in means between males and females; controlled by vowel quality and language

Multiple regressions

• X-ray Microbeam uses a narrow high-energy x-ray beam to track gold pellets attached to articu-
lators while synchronously acquiring the physiological data. Not very portable: 15 tons. Gold
pellets are secured by wires
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• EMA (Electromagnetic Articulograph) consists of a helmet with three transmitters, microscopic
sensor coils (which are attached to a subject’s articulators such as the tongue, the jaw, and the
lips), and a control computer

• These articulatory tracking systems tell us about speech production directly
• Tongue modeling; but without the root of the tongue
• Interpolation: Let us assume that we can use the data from the location of points on the top surface
of the tongue to make predictions about the location of a point on the root of the tongue

• We have seen that we can define a regression line 𝑦 = 𝑎 + 𝑏𝑥
• This simple equation allows us to express a linear relationship that might exist between two
variables

• We also have the ability to measure the strength of this linear association with the Pearson’s
correlation coefficient r

• Assume that each pellet that is placed on the tongue can take two variable positions, x and y; x
representing the front-back axis and y representing the high-low axis

• So there are 30 variables in all. Why?
• Some highly correlated pellets can be seen
• A regression formula predicts 99.7% of the variance of pellet 14’s y location if we know the y
location of pellet 15

• Aside from predicting y-y relationships, we could also predict the xy location of one of the back
pellets from one of the front pellets.

• The correlation between the y locations of pellet 1 and pellet 14 is r = 0.817
• Highest correlation between the x location of pellet 14 and any of the front pellets is with the y
location of pellet 6 (r = 0.61)

• We could keep looking into individual correlations (435 in all) and find out more about the pre-
dictions, but…that would become tedious
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Figure 3: Tongue shape recorded in the x and y locations of the pellets for the corner vowels [i], [a],
and [u]

• 𝑦 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + ... + 𝑏𝑛𝑥𝑛
• We are working with the assumption that there are 15 points on the tongue that model the dynamic
nature of the tongue

• Are these 15 adjacent points independent of each other; both statistically and physically?
• The question we are trying to answer: how many independent parameters of tongue movement
are there?

• If we are able to identify the actually independent parameters/factors that influence the movement
of the tongue, then we have successfully modeled the dynamic nature of the tongue

• There are many patterns that suggest some inter-relationships between the different x and y points
and some of these could be causal
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• Now we need to employ techniques that will help us unearth the nature of these relationships
• Let’s take a close look at 𝑦 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + ... + 𝑏𝑛𝑥𝑛
• The above linear equation can be thought of expressing a complex relationship between y and
parameters 𝑥1...𝑥𝑛

• 𝑥15 = −51.69−𝑂.97𝑦5 +1.05𝑥2 −4.04𝑥6 +4.66𝑥4 +𝑂.61𝑦2 −3.69𝑥3 +2.66𝑥5 +1.48𝑦4
• So a linear combination of some of the tongue pellet xy variables, produces an estimate of 𝑥15
that accounts for 98% of the variance of the x location of pellet 15

• Estimating ̂𝑦 = 𝐴 + 𝐵𝑥, where A is the intercept and B is the slope
• Multiple regression is an extension of linear regression where the y position is estimated based
on both 𝑥𝑖 and 𝑦𝑖 values and their corresponding coefficients

chain<-read.delim("chaindata.txt")
PL1<-subset(chain, talker=="PL1",x1:y15)
cor(PL1)

x1 x2 x3 x4 x5 x6
x1 1.0000000 0.9972439 0.9586665 0.9727643 0.9485555 0.9313837
x2 0.9972439 1.0000000 0.9737532 0.9839730 0.9647815 0.9452476
x3 0.9586665 0.9737532 1.0000000 0.9911912 0.9933240 0.9844554
x4 0.9727643 0.9839730 0.9911912 1.0000000 0.9939075 0.9706192
x5 0.9485555 0.9647815 0.9933240 0.9939075 1.0000000 0.9791682
x6 0.9313837 0.9452476 0.9844554 0.9706192 0.9791682 1.0000000
x7 0.8826467 0.9045604 0.9676897 0.9444815 0.9590505 0.9857084
x8 0.8848730 0.9027061 0.9631517 0.9355931 0.9485909 0.9857265
x9 0.8670081 0.8768510 0.9138043 0.8855591 0.8877869 0.9476435
x10 0.8180217 0.8152159 0.8197234 0.7963674 0.7849567 0.8546101
x11 0.7099233 0.6971155 0.6680835 0.6508381 0.6230325 0.7074034
x12 0.6150218 0.5978171 0.5523024 0.5423943 0.5083533 0.5912593
x13 0.5427050 0.5190964 0.4503409 0.4550445 0.4125353 0.4861107
x14 0.5594826 0.5376614 0.4534726 0.4700785 0.4215692 0.4701265
x15 0.4264830 0.4005368 0.2945995 0.3247048 0.2748709 0.3018348
y1 -0.6430144 -0.6515223 -0.6004651 -0.6607319 -0.6310148 -0.4970681
y2 -0.4468121 -0.4607197 -0.4403215 -0.4937839 -0.4830498 -0.3399075
y3 -0.2591833 -0.2814760 -0.3021502 -0.3399317 -0.3519970 -0.2159412
y4 -0.1896134 -0.2149814 -0.2485273 -0.2868717 -0.3030113 -0.1660916
y5 -0.1680348 -0.1951401 -0.2350771 -0.2700908 -0.2879589 -0.1536507
y6 -0.1812421 -0.2092955 -0.2552343 -0.2880069 -0.3045802 -0.1778198
y7 -0.1591502 -0.1854801 -0.2325480 -0.2632983 -0.2796905 -0.1613945
y8 -0.2306270 -0.2541891 -0.2864455 -0.3227920 -0.3288238 -0.2151308
y9 -0.3291291 -0.3440023 -0.3410436 -0.3888807 -0.3750269 -0.2659207
y10 -0.4209402 -0.4301827 -0.4063643 -0.4585186 -0.4326318 -0.3191451
y11 -0.4373993 -0.4447500 -0.4124883 -0.4642736 -0.4339063 -0.3286466
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y12 -0.4517399 -0.4559899 -0.4146855 -0.4709292 -0.4366739 -0.3293244
y13 -0.4538007 -0.4595669 -0.4191213 -0.4753218 -0.4421529 -0.3303649
y14 -0.4631173 -0.4692994 -0.4240054 -0.4842038 -0.4507894 -0.3339151
y15 -0.4793341 -0.4842853 -0.4374637 -0.4991052 -0.4651097 -0.3408050

x7 x8 x9 x10 x11 x12
x1 0.8826467 0.88487298 0.86700811 0.818021743 0.70992333 0.6150218
x2 0.9045604 0.90270612 0.87685096 0.815215866 0.69711553 0.5978171
x3 0.9676897 0.96315167 0.91380429 0.819723404 0.66808354 0.5523024
x4 0.9444815 0.93559314 0.88555909 0.796367409 0.65083815 0.5423943
x5 0.9590505 0.94859089 0.88778693 0.784956716 0.62303248 0.5083533
x6 0.9857084 0.98572653 0.94764355 0.854610068 0.70740345 0.5912593
x7 1.0000000 0.99081763 0.95285546 0.859488426 0.71648508 0.6019182
x8 0.9908176 1.00000000 0.97320880 0.885494088 0.74509298 0.6294228
x9 0.9528555 0.97320880 1.00000000 0.964336028 0.87235904 0.7844257
x10 0.8594884 0.88549409 0.96433603 1.000000000 0.96678427 0.9146643
x11 0.7164851 0.74509298 0.87235904 0.966784275 1.00000000 0.9828830
x12 0.6019182 0.62942279 0.78442573 0.914664271 0.98288296 1.0000000
x13 0.4901337 0.52116807 0.69360066 0.850881714 0.94789022 0.9852569
x14 0.4701821 0.49331761 0.66258850 0.819814045 0.91795544 0.9626874
x15 0.2892777 0.31663918 0.49956409 0.678650925 0.79812560 0.8787212
y1 -0.4493588 -0.39762296 -0.25567549 -0.128058327 0.00701521 0.1030256
y2 -0.2874986 -0.23956208 -0.05595084 0.113137557 0.27798263 0.3818132
y3 -0.1729971 -0.12558195 0.08611065 0.288820384 0.47602392 0.5837413
y4 -0.1320502 -0.08491869 0.13110202 0.339396744 0.52740956 0.6301562
y5 -0.1215132 -0.07950614 0.13694187 0.350869624 0.54158884 0.6450023
y6 -0.1481857 -0.10968771 0.10508806 0.323834232 0.51731325 0.6226740
y7 -0.1264282 -0.09670945 0.11505580 0.335960567 0.52879959 0.6350133
y8 -0.1734058 -0.14670145 0.04807574 0.258860153 0.44284226 0.5435993
y9 -0.2138385 -0.18813869 -0.02048560 0.161114087 0.31756533 0.4108731
y10 -0.2628619 -0.23662992 -0.08265659 0.076472242 0.22077876 0.3090629
y11 -0.2706012 -0.24680259 -0.10638710 0.042671931 0.17508219 0.2615567
y12 -0.2671119 -0.24499111 -0.11066590 0.028645171 0.15467899 0.2373482
y13 -0.2703928 -0.24499080 -0.10717815 0.034424910 0.16248729 0.2466154
y14 -0.2723349 -0.24611021 -0.11711575 0.016633350 0.14085239 0.2167362
y15 -0.2799517 -0.25335091 -0.12059365 0.008672668 0.13438856 0.2130937

x13 x14 x15 y1 y2 y3
x1 0.5427050 0.55948263 0.4264830 -0.64301440 -0.44681211 -0.25918335
x2 0.5190964 0.53766139 0.4005368 -0.65152225 -0.46071973 -0.28147602
x3 0.4503409 0.45347265 0.2945995 -0.60046514 -0.44032148 -0.30215021
x4 0.4550445 0.47007852 0.3247048 -0.66073190 -0.49378393 -0.33993165
x5 0.4125353 0.42156921 0.2748709 -0.63101478 -0.48304978 -0.35199697
x6 0.4861107 0.47012650 0.3018348 -0.49706814 -0.33990750 -0.21594119
x7 0.4901337 0.47018206 0.2892777 -0.44935875 -0.28749855 -0.17299711
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x8 0.5211681 0.49331761 0.3166392 -0.39762296 -0.23956208 -0.12558195
x9 0.6936007 0.66258850 0.4995641 -0.25567549 -0.05595084 0.08611065
x10 0.8508817 0.81981405 0.6786509 -0.12805833 0.11313756 0.28882038
x11 0.9478902 0.91795544 0.7981256 0.00701521 0.27798263 0.47602392
x12 0.9852569 0.96268739 0.8787212 0.10302563 0.38181315 0.58374133
x13 1.0000000 0.98764307 0.9335377 0.14083720 0.42054153 0.63215955
x14 0.9876431 1.00000000 0.9561889 0.05900981 0.34379768 0.57172069
x15 0.9335377 0.95618892 1.0000000 0.14094886 0.40557629 0.61428783
y1 0.1408372 0.05900981 0.1409489 1.00000000 0.95124981 0.83663103
y2 0.4205415 0.34379768 0.4055763 0.95124981 1.00000000 0.96163146
y3 0.6321596 0.57172069 0.6142878 0.83663103 0.96163146 1.00000000
y4 0.6740785 0.61544424 0.6469020 0.79590430 0.93787888 0.99406470
y5 0.6896241 0.63247447 0.6620363 0.77225258 0.92332726 0.98793904
y6 0.6723244 0.61637935 0.6612791 0.76690338 0.91666672 0.97896353
y7 0.6833332 0.63081356 0.6799293 0.73377745 0.89563802 0.96441262
y8 0.5902782 0.52604757 0.5962323 0.76191321 0.89837013 0.93565489
y9 0.4481634 0.37199594 0.4657648 0.81415716 0.90197027 0.88510293
y10 0.3463403 0.26631727 0.3643715 0.86650669 0.91433732 0.86069505
y11 0.2960953 0.21342315 0.3244851 0.85178958 0.88665380 0.81906475
y12 0.2659346 0.18139017 0.2883868 0.85763003 0.88372778 0.80562102
y13 0.2757862 0.18911409 0.2945650 0.87247430 0.89811754 0.82049735
y14 0.2393083 0.14369153 0.2409664 0.86625112 0.88421973 0.79830903
y15 0.2333982 0.13841843 0.2333638 0.89128607 0.90463227 0.81328223

y4 y5 y6 y7 y8 y9
x1 -0.18961340 -0.16803484 -0.1812421 -0.15915018 -0.23062704 -0.3291291
x2 -0.21498142 -0.19514007 -0.2092955 -0.18548007 -0.25418914 -0.3440023
x3 -0.24852731 -0.23507711 -0.2552343 -0.23254798 -0.28644546 -0.3410436
x4 -0.28687173 -0.27009083 -0.2880069 -0.26329831 -0.32279199 -0.3888807
x5 -0.30301133 -0.28795894 -0.3045802 -0.27969055 -0.32882377 -0.3750269
x6 -0.16609155 -0.15365074 -0.1778198 -0.16139454 -0.21513077 -0.2659207
x7 -0.13205022 -0.12151323 -0.1481857 -0.12642824 -0.17340577 -0.2138385
x8 -0.08491869 -0.07950614 -0.1096877 -0.09670945 -0.14670145 -0.1881387
x9 0.13110202 0.13694187 0.1050881 0.11505580 0.04807574 -0.0204856
x10 0.33939674 0.35086962 0.3238342 0.33596057 0.25886015 0.1611141
x11 0.52740956 0.54158884 0.5173133 0.52879959 0.44284226 0.3175653
x12 0.63015619 0.64500231 0.6226740 0.63501328 0.54359930 0.4108731
x13 0.67407847 0.68962408 0.6723244 0.68333324 0.59027821 0.4481634
x14 0.61544424 0.63247447 0.6163794 0.63081356 0.52604757 0.3719959
x15 0.64690203 0.66203632 0.6612791 0.67992930 0.59623228 0.4657648
y1 0.79590430 0.77225258 0.7669034 0.73377745 0.76191321 0.8141572
y2 0.93787888 0.92332726 0.9166667 0.89563802 0.89837013 0.9019703
y3 0.99406470 0.98793904 0.9789635 0.96441262 0.93565489 0.8851029
y4 1.00000000 0.99796289 0.9905223 0.97736258 0.94129214 0.8762571
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y5 0.99796289 1.00000000 0.9955177 0.98596275 0.94973687 0.8791254
y6 0.99052225 0.99551771 1.0000000 0.99577617 0.97170807 0.9083825
y7 0.97736258 0.98596275 0.9957762 1.00000000 0.98254780 0.9216446
y8 0.94129214 0.94973687 0.9717081 0.98254780 1.00000000 0.9742688
y9 0.87625708 0.87912541 0.9083825 0.92164455 0.97426878 1.0000000
y10 0.84139587 0.83899599 0.8677333 0.87500402 0.93783735 0.9868552
y11 0.79468406 0.79186422 0.8244852 0.83547263 0.91262295 0.9793339
y12 0.77951007 0.77520441 0.8068095 0.81736482 0.89745218 0.9713757
y13 0.79416606 0.78906622 0.8181364 0.82578330 0.90193599 0.9726823
y14 0.77153634 0.76600388 0.7949487 0.80206132 0.88636719 0.9631291
y15 0.78591615 0.77850325 0.8030402 0.80594877 0.88231860 0.9562594

y10 y11 y12 y13 y14 y15
x1 -0.42094022 -0.43739926 -0.45173988 -0.45380071 -0.46311733 -0.479334083
x2 -0.43018266 -0.44475002 -0.45598990 -0.45956686 -0.46929945 -0.484285271
x3 -0.40636425 -0.41248831 -0.41468546 -0.41912132 -0.42400543 -0.437463686
x4 -0.45851857 -0.46427360 -0.47092916 -0.47532177 -0.48420376 -0.499105231
x5 -0.43263181 -0.43390631 -0.43667390 -0.44215292 -0.45078936 -0.465109692
x6 -0.31914506 -0.32864664 -0.32932443 -0.33036488 -0.33391514 -0.340804991
x7 -0.26286193 -0.27060122 -0.26711187 -0.27039277 -0.27233492 -0.279951654
x8 -0.23662992 -0.24680259 -0.24499111 -0.24499080 -0.24611021 -0.253350909
x9 -0.08265659 -0.10638710 -0.11066590 -0.10717815 -0.11711575 -0.120593647
x10 0.07647224 0.04267193 0.02864517 0.03442491 0.01663335 0.008672668
x11 0.22077876 0.17508219 0.15467899 0.16248729 0.14085239 0.134388558
x12 0.30906295 0.26155672 0.23734818 0.24661543 0.21673617 0.213093726
x13 0.34634035 0.29609531 0.26593457 0.27578619 0.23930832 0.233398232
x14 0.26631727 0.21342315 0.18139017 0.18911409 0.14369153 0.138418428
x15 0.36437145 0.32448509 0.28838678 0.29456500 0.24096644 0.233363825
y1 0.86650669 0.85178958 0.85763003 0.87247430 0.86625112 0.891286071
y2 0.91433732 0.88665380 0.88372778 0.89811754 0.88421973 0.904632267
y3 0.86069505 0.81906475 0.80562102 0.82049735 0.79830903 0.813282233
y4 0.84139587 0.79468406 0.77951007 0.79416606 0.77153634 0.785916146
y5 0.83899599 0.79186422 0.77520441 0.78906622 0.76600388 0.778503246
y6 0.86773334 0.82448524 0.80680947 0.81813640 0.79494867 0.803040241
y7 0.87500402 0.83547263 0.81736482 0.82578330 0.80206132 0.805948771
y8 0.93783735 0.91262295 0.89745218 0.90193599 0.88636719 0.882318605
y9 0.98685523 0.97933388 0.97137567 0.97268234 0.96312908 0.956259357
y10 1.00000000 0.99510071 0.99255503 0.99373309 0.98464383 0.983356475
y11 0.99510071 1.00000000 0.99861383 0.99832613 0.99246803 0.987339321
y12 0.99255503 0.99861383 1.00000000 0.99922809 0.99499543 0.991746225
y13 0.99373309 0.99832613 0.99922809 1.00000000 0.99585279 0.994107054
y14 0.98464383 0.99246803 0.99499543 0.99585279 1.00000000 0.996442112
y15 0.98335648 0.98733932 0.99174623 0.99410705 0.99644211 1.000000000
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cov(PL1)

x1 x2 x3 x4 x5 x6 x7
x1 18.688494 20.257932 19.559742 20.71310 18.317303 16.912481 16.101781
x2 20.257932 22.080714 21.595530 22.77404 20.251032 18.657079 17.936760
x3 19.559742 21.595530 22.274955 23.04179 20.941653 19.516232 19.272782
x4 20.713102 22.774042 23.041793 24.26056 21.867947 20.081253 19.631059
x5 18.317303 20.251032 20.941653 21.86795 19.953692 18.372171 18.078109
x6 16.912481 18.657079 19.516232 20.08125 18.372171 17.643432 17.471889
x7 16.101781 17.936760 19.272782 19.63106 18.078109 17.471889 17.807368
x8 15.551510 17.244770 18.480238 18.73449 17.226421 16.832648 16.998009
x9 16.117945 17.718694 18.546457 18.75717 17.053744 17.117325 17.291245
x10 16.514806 17.889602 18.067466 18.31831 16.374907 16.764130 16.937971
x11 16.328849 17.428832 16.776299 17.05613 14.807417 15.809411 16.086590
x12 16.052530 16.960580 15.738059 16.12989 13.710178 14.994615 15.335684
x13 15.201030 15.804351 13.771202 14.52200 11.939739 13.229662 13.400977
x14 16.474682 17.209121 14.578163 15.77118 12.826962 13.450844 13.514787
x15 12.715161 12.980217 9.589003 11.02991 8.467855 8.743671 8.418755
y1 -19.571558 -21.555265 -19.953256 -22.91359 -19.845805 -14.700260 -13.350903
y2 -15.262113 -17.105902 -16.420292 -19.21719 -17.049283 -11.281189 -9.586016
y3 -9.272095 -10.945398 -11.800895 -13.85561 -13.011704 -7.506036 -6.041188
y4 -6.921835 -8.530463 -9.904844 -11.93173 -11.429720 -5.891206 -4.705482
y5 -6.344121 -8.008257 -9.689553 -11.61837 -11.233813 -5.636522 -4.478251
y6 -6.450443 -8.096731 -9.917236 -11.67876 -11.200994 -6.149148 -5.148129
y7 -5.524963 -6.999046 -8.813655 -10.41438 -10.032854 -5.443966 -4.284292
y8 -7.362861 -8.820897 -9.983885 -11.74147 -10.847360 -6.673340 -5.403966
y9 -9.271154 -10.532909 -10.488145 -12.48094 -10.915772 -7.278202 -5.879850
y10 -11.032171 -12.254987 -11.627258 -13.69181 -11.716111 -8.127052 -6.724825
y11 -11.514051 -12.725811 -11.854494 -13.92475 -11.802406 -8.405889 -6.953325
y12 -12.027375 -13.196448 -12.053758 -14.28569 -12.013350 -8.519434 -6.942059
y13 -11.958642 -13.163907 -12.058067 -14.27143 -12.039645 -8.458920 -6.955438
y14 -13.034671 -14.357489 -13.028719 -15.52746 -13.110136 -9.131656 -7.482127
y15 -14.487783 -15.910517 -14.435336 -17.18775 -14.525915 -10.008614 -8.259607

x8 x9 x10 x11 x12 x13 x14
x1 15.551510 16.117945 16.5148062 16.3288491 16.052530 15.201030 16.474682
x2 17.244770 17.718694 17.8896015 17.4288323 16.960580 15.804351 17.209121
x3 18.480238 18.546457 18.0674657 16.7762994 15.738059 13.771202 14.578163
x4 18.734491 18.757169 18.3183079 17.0561251 16.129886 14.521997 15.771176
x5 17.226421 17.053744 16.3749066 14.8074169 13.710178 11.939739 12.826962
x6 16.832648 17.117325 16.7641299 15.8094105 14.994615 13.229662 13.450844
x7 16.998009 17.291245 16.9379712 16.0865904 15.335684 13.400977 13.514787
x8 16.527567 17.014134 16.8116996 16.1165440 15.449440 13.727907 13.660745

57



x9 17.014134 18.492631 19.3664149 19.9595892 20.366528 19.325508 19.408257
x10 16.811700 19.366415 21.8093624 24.0219379 25.789862 25.746176 26.078351
x11 16.116544 19.959589 24.0219379 28.3083108 31.573636 32.676617 33.267630
x12 15.449440 20.366528 25.7898616 31.5736358 36.452861 38.542276 39.590809
x13 13.727907 19.325508 25.7461763 32.6766168 38.542276 41.980164 43.587842
x14 13.660745 19.408257 26.0783509 33.2676298 39.590809 43.587842 46.396644
x15 8.877734 14.815748 21.8575230 29.2860793 36.588949 41.714490 44.917958
y1 -11.381342 -7.741159 -4.2106279 0.2627939 4.379542 6.424761 2.829991
y2 -7.695293 -1.901116 4.1747539 11.6863054 18.214586 21.529480 18.503284
y3 -4.224889 3.064360 11.1617667 20.9589428 29.165530 33.894746 32.226327
y4 -2.915230 4.760733 13.3842567 23.6957293 32.127662 36.880569 35.399497
y5 -2.822865 5.143048 14.3104157 25.1658543 34.010426 39.022894 37.624547
y6 -3.671180 3.720454 12.4505200 22.6596829 30.950650 35.862800 34.564845
y7 -3.157246 3.973223 12.5992546 22.5934810 30.788156 35.554099 34.504788
y8 -4.404413 1.526773 8.9276243 17.4002407 24.237840 28.244119 26.461687
y9 -4.983828 -0.574022 4.9027013 11.0095734 16.164192 18.920773 16.510565
y10 -5.832135 -2.154916 2.1651038 7.1214375 11.312697 13.604374 10.997552
y11 -6.109661 -2.785809 1.2134635 5.6723351 9.616004 11.681982 8.852129
y12 -6.134089 -2.930950 0.8238880 5.0685481 8.825656 10.611875 7.609433
y13 -6.071329 -2.809539 0.9799949 5.2699428 9.076441 10.892413 7.852297
y14 -6.514123 -3.278963 0.5057351 4.8791379 8.519598 10.094894 6.372302
y15 -7.201176 -3.625770 0.2831722 4.9991450 8.995244 10.572948 6.591946

x15 y1 y2 y3 y4 y5
x1 12.715161 -19.5715582 -15.262113 -9.272095 -6.921835 -6.344121
x2 12.980217 -21.5552651 -17.105902 -10.945398 -8.530463 -8.008257
x3 9.589003 -19.9532560 -16.420292 -11.800895 -9.904844 -9.689553
x4 11.029913 -22.9135946 -19.217192 -13.855609 -11.931725 -11.618371
x5 8.467855 -19.8458050 -17.049283 -13.011704 -11.429720 -11.233813
x6 8.743671 -14.7002597 -11.281189 -7.506036 -5.891206 -5.636522
x7 8.418755 -13.3509027 -9.586016 -6.041188 -4.705482 -4.478251
x8 8.877734 -11.3813421 -7.695293 -4.224889 -2.915230 -2.822865
x9 14.815748 -7.7411592 -1.901116 3.064360 4.760733 5.143048
x10 21.857523 -4.2106279 4.174754 11.161767 13.384257 14.310416
x11 29.286079 0.2627939 11.686305 20.958943 23.695729 25.165854
x12 36.588949 4.3795416 18.214586 29.165530 32.127662 34.010426
x13 41.714490 6.4247614 21.529480 33.894746 36.880569 39.022894
x14 44.917958 2.8299908 18.503284 32.226327 35.399497 37.624547
x15 47.562648 6.8440336 22.100809 35.058113 37.673557 39.874920
y1 6.844034 49.5718479 52.919379 48.745568 47.319866 47.485598
y2 22.100809 52.9193787 62.431705 62.877443 62.576959 63.715229
y3 35.058113 48.7455684 62.877443 68.480548 69.464573 71.400089
y4 37.673557 47.3198660 62.576959 69.464573 71.306677 73.597742
y5 39.874920 47.4855982 63.715229 71.400089 73.597742 76.272852
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y6 37.545775 44.4530388 59.628971 66.695015 68.860883 71.577617
y7 37.655796 41.4874727 56.829022 64.088714 66.275936 69.148150
y8 30.366708 39.6161503 52.421219 57.180575 58.700087 61.254430
y9 20.930523 37.3513447 46.438187 47.726307 48.214435 50.028360
y10 15.234590 36.9864695 43.798824 43.180366 43.074365 44.422018
y11 13.626700 36.5184907 42.659879 41.272881 40.862275 42.111301
y12 12.249084 37.1888535 43.004743 41.059122 40.539846 41.696201
y13 12.383508 37.4455081 43.257888 41.389514 40.879536 42.007610
y14 10.819606 39.7084788 45.486726 43.010703 42.417334 43.554983
y15 11.252344 43.8743948 49.974808 47.054522 46.399978 47.535918

y6 y7 y8 y9 y10 y11
x1 -6.450443 -5.524963 -7.362861 -9.271154 -11.032171 -11.514051
x2 -8.096731 -6.999046 -8.820897 -10.532909 -12.254987 -12.725811
x3 -9.917236 -8.813655 -9.983885 -10.488145 -11.627258 -11.854494
x4 -11.678756 -10.414383 -11.741467 -12.480939 -13.691806 -13.924747
x5 -11.200994 -10.032854 -10.847360 -10.915772 -11.716111 -11.802406
x6 -6.149148 -5.443966 -6.673340 -7.278202 -8.127052 -8.405889
x7 -5.148129 -4.284292 -5.403966 -5.879850 -6.724825 -6.953325
x8 -3.671180 -3.157246 -4.404413 -4.983828 -5.832135 -6.109661
x9 3.720454 3.973223 1.526773 -0.574022 -2.154916 -2.785809
x10 12.450520 12.599255 8.927624 4.902701 2.165104 1.213464
x11 22.659683 22.593481 17.400241 11.009573 7.121438 5.672335
x12 30.950650 30.788156 24.237840 16.164192 11.312697 9.616004
x13 35.862800 35.554099 28.244119 18.920773 13.604374 11.681982
x14 34.564845 34.504788 26.461687 16.510565 10.997552 8.852129
x15 37.545775 37.655796 30.366708 20.930523 15.234590 13.626700
y1 44.453039 41.487473 39.616150 37.351345 36.986470 36.518491
y2 59.628971 56.829022 52.421219 46.438187 43.798824 42.659879
y3 66.695015 64.088714 57.180575 47.726307 43.180366 41.272881
y4 68.860883 66.275936 58.700087 48.214435 43.074365 40.862275
y5 71.577617 69.148150 61.254430 50.028360 44.422018 42.111301
y6 67.777648 65.832453 59.078338 48.729556 43.309477 41.332252
y7 65.832453 64.486695 58.269054 48.225747 42.598912 40.853590
y8 59.078338 58.269054 54.537902 46.882249 41.988479 41.039640
y9 48.729556 48.225747 46.882249 42.458131 38.984080 38.857438
y10 43.309477 42.598912 41.988479 38.984080 36.754186 36.735282
y11 41.332252 40.853590 41.039640 38.857438 36.735282 37.078818
y12 40.908117 40.424649 40.818382 38.981892 37.059816 37.450341
y13 41.058067 40.423200 40.602658 38.635007 36.724229 37.056544
y14 42.609282 41.933829 42.617186 40.858914 38.864622 39.346069
y15 46.222882 45.250040 45.556580 43.564487 41.681261 42.034495

y12 y13 y14 y15
x1 -12.027375 -11.9586417 -13.0346709 -14.4877828
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x2 -13.196448 -13.1639068 -14.3574887 -15.9105167
x3 -12.053758 -12.0580673 -13.0287191 -14.4353358
x4 -14.285690 -14.2714346 -15.5274605 -17.1877480
x5 -12.013350 -12.0396446 -13.1101356 -14.5259148
x6 -8.519434 -8.4589204 -9.1316556 -10.0086140
x7 -6.942059 -6.9554380 -7.4821273 -8.2596068
x8 -6.134089 -6.0713291 -6.5141234 -7.2011756
x9 -2.930950 -2.8095395 -3.2789631 -3.6257700
x10 0.823888 0.9799949 0.5057351 0.2831722
x11 5.068548 5.2699428 4.8791379 4.9991450
x12 8.825656 9.0764410 8.5195978 8.9952438
x13 10.611875 10.8924133 10.0948936 10.5729479
x14 7.609433 7.8522967 6.3723019 6.5919463
x15 12.249084 12.3835081 10.8196062 11.2523443
y1 37.188854 37.4455081 39.7084788 43.8743948
y2 43.004743 43.2578876 45.4867265 49.9748083
y3 41.059122 41.3895140 43.0107028 47.0545218
y4 40.539846 40.8795357 42.4173341 46.3999782
y5 41.696201 42.0076104 43.5549831 47.5359181
y6 40.908117 41.0580667 42.6092823 46.2228822
y7 40.424649 40.4231998 41.9338291 45.2500396
y8 40.818382 40.6026578 42.6171860 45.5565803
y9 38.981892 38.6350074 40.8589137 43.5644865
y10 37.059816 36.7242291 38.8646223 41.6812612
y11 37.450341 37.0565438 39.3460694 42.0344954
y12 37.930670 37.5136590 39.8968150 42.7043660
y13 37.513659 37.1585761 39.5226960 42.3681159
y14 39.896815 39.5226960 42.3880823 45.3576371
y15 42.704366 42.3681159 45.3576371 48.8824460

summary(lm(y15 ~ y2 + y6 + y5 + x6 + x5, data = PL1))

Call:
lm(formula = y15 ~ y2 + y6 + y5 + x6 + x5, data = PL1)

Residuals:
23 24 25 26 27 28 29 30 31 32

-0.7107 -1.0186 0.6163 1.4168 0.3217 0.5271 -0.5677 -1.2789 1.2641 -0.7737
33

0.2036
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -16.8100 6.8275 -2.462 0.05708 .
y2 1.2785 0.1937 6.599 0.00120 **
y6 3.8458 0.6110 6.294 0.00149 **
y5 -4.1140 0.6104 -6.740 0.00109 **
x6 1.4703 0.8134 1.808 0.13048
x5 -1.1467 0.8165 -1.404 0.21919
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.304 on 5 degrees of freedom
Multiple R-squared: 0.9826, Adjusted R-squared: 0.9652
F-statistic: 56.46 on 5 and 5 DF, p-value: 0.000213

Multiple regressions: Step by step

Model selection

• Regression coefficients can be found by using the lm() function
• That is the 𝑏𝑖 values in the regression equation 𝑦 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + ... + 𝑏𝑛𝑥𝑛

• But how should we go about selecting a model that predicts the y
• Principle followed so far: predicting the root of the tongue from the top of the tongue
• This involves models that use some combination of the x and y locations of pellets 2, 3, 4, 5 and
6

• Using five pellets to predict the root of the tongue gives us 10 variables That is a whopping 210

regression models
• Why?
• The balance hangs between 1. high within-dataset accuracy on the one hand, and 2. high predic-
tive accuracy for new data on the other

• More the number of parameters, more our ability to account for all the variation that is present
in a set of data; that being said

• “Over-fitted” models or ones with too many predictors/parameters suffer from the problem of
breaking down when new data are presented

• We want to find a model with few parameters and get as good a fit as possible with a minimum
of predictive variables.
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• For this, the step() function in R is used, which in turn uses the Akaike Information Criterion.
• This is a log-likelihood measure of model fitness that adds a penalty for each new parameter.
• Adding parameters incurs penalties, and so the predictions have to improve not by tiny increments
but by large values for a new model with added parameters to be acceptable.

• Log-likelihood is similar to least-squares in terms of selecting a model that is the best fit.
• Recall, that the arithmetic average, i.e., the least-squares estimate of central tendency minimizes
the squared deviations.

• A log likelihood estimate maximizes the likelihood of the model; is similar to least squares in
that regard

Likelihood of a Model

• L(M) the likelihood of model M, has two terms

1. Model fitness and the
2. Model size, where nm is the number of coefficients in the regression equation

• AIC = -2logL(M) + 2nm
• step() is used to select a model to predict the y location of pellet 15 in the PL1chain data
• Let’s say, step 1, the initial model has only one parameter - the intercept value
• This is specified with y15~1.
• The second argument, is the largest model we would like to consider; i.e., has the xy locations
for pellets 2,3,4,5,and 6.

summary(y.step <- step(lm(y15 ~ 1,data=PL1),y15~ x2+y2 + x3+y3+ x4+y4 + x5+y5+ x6+y6))

Start: AIC=43.74
y15 ~ 1

Df Sum of Sq RSS AIC
+ y2 1 400.03 88.79 26.972
+ y3 1 323.32 165.50 33.822
+ y6 1 315.23 173.59 34.347
+ y4 1 301.93 186.90 35.159
+ y5 1 296.26 192.56 35.488
+ x4 1 121.77 367.06 42.584
+ x2 1 114.65 374.18 42.795
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+ x5 1 105.75 383.08 43.054
+ x3 1 93.55 395.28 43.399
<none> 488.82 43.735
+ x6 1 56.78 432.05 44.377

Step: AIC=26.97
y15 ~ y2

Df Sum of Sq RSS AIC
+ y3 1 20.84 67.95 26.030
+ y4 1 15.87 72.92 26.806
<none> 88.79 26.972
+ y5 1 10.68 78.11 27.562
+ x2 1 2.83 85.96 28.616
+ y6 1 2.10 86.69 28.709
+ x4 1 1.78 87.01 28.750
+ x3 1 0.93 87.86 28.857
+ x6 1 0.61 88.18 28.896
+ x5 1 0.50 88.29 28.910
- y2 1 400.03 488.82 43.735

Step: AIC=26.03
y15 ~ y2 + y3

Df Sum of Sq RSS AIC
+ y6 1 32.429 35.525 20.896
+ y5 1 11.557 56.397 25.980
<none> 67.954 26.030
- y3 1 20.836 88.790 26.972
+ x2 1 3.243 64.711 27.492
+ y4 1 3.049 64.905 27.525
+ x5 1 2.612 65.342 27.599
+ x4 1 2.292 65.662 27.653
+ x3 1 2.175 65.779 27.672
+ x6 1 1.706 66.248 27.751
- y2 1 97.548 165.502 33.822

Step: AIC=20.9
y15 ~ y2 + y3 + y6

Df Sum of Sq RSS AIC
+ y5 1 13.104 22.421 17.833
+ y4 1 11.615 23.910 18.541
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<none> 35.525 20.896
+ x4 1 3.829 31.696 21.641
+ x5 1 3.688 31.837 21.690
+ x3 1 3.323 32.202 21.815
+ x6 1 2.795 32.730 21.995
+ x2 1 2.636 32.890 22.048
- y6 1 32.429 67.954 26.030
- y3 1 51.163 86.689 28.709
- y2 1 129.423 164.949 35.785

Step: AIC=17.83
y15 ~ y2 + y3 + y6 + y5

Df Sum of Sq RSS AIC
+ x6 1 11.437 10.984 11.984
+ x3 1 11.097 11.324 12.320
+ x4 1 10.624 11.797 12.770
+ x5 1 9.989 12.432 13.346
+ x2 1 9.918 12.503 13.409
- y3 1 2.215 24.636 16.869
<none> 22.421 17.833
+ y4 1 0.435 21.987 19.618
- y5 1 13.104 35.525 20.896
- y6 1 33.976 56.397 25.980
- y2 1 50.218 72.639 28.764

Step: AIC=11.98
y15 ~ y2 + y3 + y6 + y5 + x6

Df Sum of Sq RSS AIC
- y3 1 0.879 11.863 10.831
+ x5 1 2.514 8.470 11.126
<none> 10.984 11.984
+ y4 1 1.222 9.762 12.687
+ x4 1 1.114 9.870 12.807
+ x2 1 0.598 10.386 13.368
+ x3 1 0.004 10.980 13.980
- x6 1 11.437 22.421 17.833
- y5 1 21.746 32.730 21.994
- y6 1 44.623 55.607 27.825
- y2 1 58.529 69.513 30.280

Step: AIC=10.83
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y15 ~ y2 + y6 + y5 + x6

Df Sum of Sq RSS AIC
+ x5 1 3.355 8.507 9.173
+ y4 1 2.059 9.804 10.733
<none> 11.863 10.830
+ x4 1 1.893 9.970 10.918
+ x2 1 1.192 10.670 11.665
+ y3 1 0.879 10.984 11.984
+ x3 1 0.152 11.711 12.689
- x6 1 12.773 24.636 16.869
- y6 1 65.692 77.555 29.484
- y5 1 74.744 86.607 30.698
- y2 1 126.711 138.573 35.869

Step: AIC=9.17
y15 ~ y2 + y6 + y5 + x6 + x5

Df Sum of Sq RSS AIC
<none> 8.507 9.173
+ x3 1 1.323 7.184 9.314
+ y4 1 0.847 7.661 10.020
+ x4 1 0.332 8.175 10.735
- x5 1 3.355 11.863 10.830
+ x2 1 0.098 8.409 11.046
+ y3 1 0.037 8.470 11.126
- x6 1 5.559 14.066 12.705
- y6 1 67.409 75.916 31.249
- y2 1 74.084 82.591 32.176
- y5 1 77.288 85.795 32.595

Call:
lm(formula = y15 ~ y2 + y6 + y5 + x6 + x5, data = PL1)

Residuals:
23 24 25 26 27 28 29 30 31 32

-0.7107 -1.0186 0.6163 1.4168 0.3217 0.5271 -0.5677 -1.2789 1.2641 -0.7737
33

0.2036

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -16.8100 6.8275 -2.462 0.05708 .
y2 1.2785 0.1937 6.599 0.00120 **
y6 3.8458 0.6110 6.294 0.00149 **
y5 -4.1140 0.6104 -6.740 0.00109 **
x6 1.4703 0.8134 1.808 0.13048
x5 -1.1467 0.8165 -1.404 0.21919
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.304 on 5 degrees of freedom
Multiple R-squared: 0.9826, Adjusted R-squared: 0.9652
F-statistic: 56.46 on 5 and 5 DF, p-value: 0.000213
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